Có hai dãy ghế đối diện nhau, mỗi dãy có 3 ghế. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng:

Chọn A

Ta có tất cả các số tự nhiên có 5 chữ số bắt đầu từ 10000 đến 99999 gồm 90000 số.

Do đó n(Ω) = 90000

Mặt khác, ta thấy cứ 70 số tự nhiên liên tiếp thì có 10 số chia hết cho 7, trong đó có 1 số có chữ số hàng đơn vị là chữ số 1.

Mà 90000 = 70×1285+50, nên ta chia 90000 số thành 1285 bộ 70 số liên tiếp và còn lại 50 số cuối, trong đó:

1285 bộ 70 số tự nhiên liên tiếp có 1285 số thỏa mãn yêu cầu

50 số cuối có 5 số tận cùng bằng 1 được xét trong bảng sau

99951

99961

99971

99981

99991

Chia cho 7 dư 5

Chia cho 7 dư 1

Chia cho 7 dư 4

Chia hết cho 7

Chia cho 7 dư 3

Vậy tất cả có 1286 số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1.

Gọi là biến cố ‘Chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1’ thì n(A) = 1286

Suy ra

Cách 2:

Vì A là tập tất cả các số tự nhiên có 5 chữ số nên

Số phần tử của không gian mẫu là

Gọi X là biến cố: “Chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1 từ tập A”.

Khi có tận cùng bằng 1, do đó với có chữ số tận cùng là 3.

Xét các trường hợp sau:

1) M là số có 4 chữ số có dạng mnpq¯ Khi đó:

– Với m = 1, do

+) Khi n = 4 thì p > 2 nên . Ta được 7 số thỏa mãn.

+) Khi n≥5 : Có 5 cách chọn n thuộc tập hợp {5;6;7;8;9}. Khi đó p được chọn tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 50 số thỏa mãn.

– Với m≥2 tức là có 8 cách chọn m từ tập {2;3;4;5;6;7;8;9}. Khi đó với mọi n,p thuộc tập hợp {0;1;2;3;4;5;6;7;8;9}. Ta được 8.10.10 = 800 số thỏa mãn.

2) M là số có 5 chữ số có dạng mnpqr¯ Khi đó:

Do mnpqr¯ ≤ 14285 nên m chỉ nhận giá trị bằng 1 và n ≤ 4

– Với m = 1; n = 0,1,2,3 thì p,q là các số tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 4.10.10 = 400 số thỏa mãn.

– Với m = 1; n = 4:

+) Khi p = 0 hoặc p = 1 thì q là số tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 2.10 = 20 số thỏa mãn.

+) Khi p = 2 thì q phải thuộc tập {0;1;2;3;4;5;6;7;8}. Ta được 9 số thỏa mãn.

Vậy số phần tử của biến cố X là n(X) = 7 + 50 + 8000 + 429 = 1286

Xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là 1 bằng