Myth buster: Nuclear energy is a dangerous distraction – CAN Europe

The decision to build the UK’s Hinkley Point C nuclear reactor was announced in 2007 with an operational start date of 2017, however it has been delayed several times over, and is now estimated to start in 2031. In France, the Flamanville project is 16 years into construction and hitting new delays, while Finland’s Olkiluoto took a full 18 years to come online.

Nuclear power is too expensive

When compared to renewables, the latest analysis from World Nuclear Industry Status Report, using the data from Lazard, determines that the levelized cost of energy (LCOE) for new nuclear plants makes it the most expensive generator, estimated to be nearly four times more expensive than onshore wind, while unsubsidized solar and wind combined with energy storage (to ensure grid balancing) is always cheaper than new nuclear.

Recent European projects in Slovakia, the UK, France, and Finland demonstrate the dramatic rising costs. EDF admitted that the costs for the British nuclear facility Hinkley Point C will skyrocket to 53.8 billion euros for the scheduled 3.2 GW power plant, more than twice as much as scheduled in 2015 when the plant was approved. The French project in Flamanville was originally projected to cost 3.3 billion euros when it began construction in 2007, but has since risen to 13.2 billion euros (16.87 billion euros in today’s money). The Finnish Olkiluoto-3 project 1.6GW reactor cost 3 times more than the original forecast price, reaching 11 billion euros. Slovakia’s second generation reactors Mochovce 3 and 4 ballooned costs to 6.4 billion euros from an initially estimated 2.8 billion. Slovenia’s president announced that a new 1.6GW reactor would cost 11 billion euros, following the Finnish example, demonstrating that these high prices are here to stay.

Renewables and energy efficiency are cheaper alternatives

When compared against energy savings, analysis by Hungarian NGO Clean Air Action Group highlights that it is more economically efficient to invest in the renovation of households to save energy than in the construction, operation, and decommissioning of a new nuclear reactor. These findings were confirmed by a separate study by Greenpeace France, that showed that by investing 52 billion euros in a mix of onshore wind infrastructure/photovoltaic panels on large roofs, it would be possible to avoid four times more CO2 emissions than by investing the same amount in the construction of six EPR2 nuclear reactors by 2050, while electricity production triples. By investing 85 billion euros of government subsidies in energy savings by 2033, it would be possible to avoid six times more cumulative CO2 emissions by 2050 than with the construction program of six EPR 2 reactors. This would also make it possible to lift almost 12 million people out of energy poverty in a decade.

In order to finance new and ongoing projects, the EU has approved State Aid for nuclear, in the case of Hungary, Belgium, and the United Kingdom, while national governments seek support schemes. Despite making references to technology-neutrality, this creates an unlevel playing field slanted against renewable energy. Given the significant investment gap to achieve 2030 climate targets, and the limited fiscal space of many Member States, investments in nuclear risk diverting precious public resources into projects of poor value-for-money compared to alternatives in a renewables-based system, while reducing the availability of public resources for all other components of the energy transition. Such a choice would equally fail to reduce prices for consumers in the context of the current fossil fuel energy crisis.

Nuclear power includes many additional hidden costs

The costs would be even larger if accounting for “unpaid externalities” borne by taxpayers and the public at large, from nuclear accident risks that are impossible to insure against by private actors. The costs of decommissioning of a nuclear power plant, which can cost 1-1.5 billion euros per 1000 MW, are often borne by the public as these costs are poorly taken into account when planning a new nuclear installation. The cost associated with storing radioactive waste for hundreds of thousands of years is also often undervalued, alongside costs associated with radioactive leaks from plants or storage facilities, as demonstrated by the radioactive leaks in the UK Sellafield site, causing tension with Ireland and Norway. To lower costs, attempted lowering of safety and environmental standards can be expected, posing risks to communities, nature, and society at large, also as a burden to future generations.