Giải sách bài tập Toán lớp 7 Bài tập cuối chương 7
Bài 101 trang 98 sách bài tập Toán lớp 7 Tập 2: Trong các hình 62a, 62b, 62c, 62d, hình nào có điểm cách đều các đỉnh của tam giác đó? Vì sao?
Lời giải:
•Hình 62a:
Xét tam giác ABC có G là giao điểm của ba đường trung tuyến AD, BE, CF nên G là trọng tâm của tam giác ABC.
Do đó G không cách đều ba đỉnh của tam giác ABC
•Hình 62b:
Xét tam giác ABC có I là giao điểm của ba đường phân giác AI, BI, CI nên I cách đều ba cạnh của tam giác ABC.
Do đó I không cách đều ba đỉnh của tam giác ABC
•Hình 62c:
Xét tam giác ABC có O là giao điểm của ba đường trung trực nên OA = OB = OC.
Do đó O cách đều ba đỉnh của tam giác ABC.
•Hình 62d:
Xét tam giác ABC có H là giao điểm của ba đường cao AI, BK, CL nên H là trực tâm của tam giác ABC.
Do đó H không cách đều ba đỉnh của tam giác ABC.
Vậy hình 62c có điểm O cách đều các đỉnh của tam giác ABC.
Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
-
Bài 99 trang 98 sách bài tập Toán lớp 7 Tập 2: Cho hai tam giác ABC và MNP có ABC^=MNP^, ACB^=MPN^. Cần thêm một điều kiện để tam giác ABC ….
-
Bài 100 trang 98 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có BAC^=110°. Các đường trung trực của AB và AC cắt cạnh BC ….
-
Bài 102 trang 98 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC và điểm G nằm trong tam giác. Chứng minh: Nếu diện tích các tam giác GAB, GBC và GCA ….
-
Bài 103 trang 98 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có ba góc nhọn, AB < AC < BC. Các tia phân giác của góc A ….
-
Bài 104 trang 99 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có AB < AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E ….
-
Bài 105 trang 99 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H ….
-
Bài 106 trang 99 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC….
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Cánh diều
- Giải SBT Toán 7 Cánh diều
- Giải lớp 7 Cánh diều (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
