Giải sách bài tập Toán 11 Bài 25: Hai mặt phẳng vuông góc – Kết nối tri thức
Bài 7.19 trang 34 SBT Toán 11 Tập 2: Cho tứ diện đều ABCD có độ dài các cạnh bằng a. Gọi M là trung điểm của CD, kẻ AH vuông góc với BM tại H.
a) Chứng minh rằng AH ⊥ (BCD).
b) Tính côsin của góc giữa mặt phẳng (BCD) và mặt phẳng (ACD).
Lời giải:
a) Vì M là trung điểm của CD nên BM là trung tuyến.
Vì BCD là tam giác đều nên CD ⊥ BM.
Tương tự CD ⊥ AM nên CD ⊥ (ABM), suy ra CD ^ AH.
Mà AH ⊥ BM nên AH ⊥ (BCD).
b) Vì AM ⊥ CD, BM ⊥ CD nên góc giữa hai mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc giữa hai đường thẳng AM và BM, mà (AB,BM) = AMB^.
Tam giác BCD đều có BM là đường cao đồng thời là trung tuyến, ta chứng minh được H là trọng tâm tam giác BCD nên BM = a32 và HM = 13BM = a36.
Tam giác ADC đều có AM là đường cao đồng thời là trung tuyến nên AM = a32 .
Xét tam giác AHM vuông tại H nên cosAMB^ = cosAMH^=HMAM=13.
Vậy côsin của góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng 13 .
Lời giải SBT Toán 11 Bài 25: Hai mặt phẳng vuông góc hay khác:
-
Bài 7.20 trang 34 SBT Toán 11 Tập 2: Cho tứ diện ABCD có AC = BC, AD = BD. Gọi M là trung điểm của AB. Chứng minh rằng (CDM) ⊥ (ABC) và (CDM) ⊥ (ABD) ….
-
Bài 7.21 trang 34 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh bằng a, góc BAD bằng 60°. Kẻ OH vuông góc với SC tại H ….
-
Bài 7.22 trang 34 SBT Toán 11 Tập 2: Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Tính côsin góc giữa hai mặt phẳng sau ….
-
Bài 7.23 trang 34 SBT Toán 11 Tập 2: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a ….
-
Bài 7.24 trang 34 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, biết (SAB) ⊥ (ABCD), (SAD) ⊥ (ABCD) và SA = a ….
-
Bài 7.25 trang 35 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD) ….
-
Bài 7.26 trang 35 SBT Toán 11 Tập 2: Một viên bi được thả lăn trên một mặt phẳng nằm nghiêng (so với mặt phẳng nằm ngang) ….
Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
-
SBT Toán 11 Bài 26: Khoảng cách
-
SBT Toán 11 Bài 27: Thể tích
-
SBT Toán 11 Bài tập cuối chương 7
-
SBT Toán 11 Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập
-
SBT Toán 11 Bài 29: Công thức cộng xác suất
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
