Giải sách bài tập Toán 11 Bài 5: Khoảng cách
Bài 49 trang 110 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, AC cắt BD tại O, SO ⊥ (ABCD), SA = 2a. Tính khoảng cách:
a) Từ điểm A đến mặt phẳng (SBD);
b) Giữa hai đường thẳng SO và CD;
c) Từ điểm O đến mặt phẳng (SCD);
d*) Giữa hai đường thẳng AB và SD.
Lời giải:
a) Ta có: SO ⊥ (ABCD), AO ⊂ (ABCD) nên SO ⊥ AO.
Do ABCD là hình vuông nên AC ⊥ BD hay AO ⊥ BD.
Ta có: AO ⊥ SO, AO ⊥ DB, SO ∩ BD = O trong (SBD)
Suy ra AO ⊥ (ABCD).
Như vây: d(A, (SBD)) = AO.
Ta có: ABCD là hình vuông cạnh a nên AC=a2.
Vì O là giao điểm của hai đường chéo AC và BD trong hình vuông ABCD nên O là trung điểm của AC và BD.
⇒AO=AC2=a22.
Vậy dA,SBD=a22.
b) Gọi M là hình chiếu của O trên CD hay OM ⊥ CD.
Do SO ⊥ (ABCD), OM ⊂ (ABCD) nên SO ⊥ OM.
Từ đó ta thấy OM là đoạn vuông góc chung của hai đường thẳng SO và CD.
Như vậy: d(SO, CD) = OM.
Xét hình vuông ABCD có: OM ⊥ CD, AD ⊥ CD nên OM // AD.
Xét tam giác ACD có: OM // AD, O là trung điểm của AD.
Suy ra OM là đường trung bình của tam giác ACD nên M là trung điểm của CD
⇒OM=AD2=a2.
Vậy dSO,CD=OM=a2.
c) Gọi H là hình chiếu của O trên SM hay OH ⊥ SM.
Do SO ⊥ (ABCD), CD ⊂ (ABCD) nên SO ⊥ CD.
Ta có: CD ⊥ OM, CD ⊥ SO, SO ∩ OM = O trong (SOM)
Suy ra CD ⊥ (SOM).
Mà OH ⊂ (SOM) nên CD ⊥ OH.
Ta có: OH ⊥ SM, OH ⊥ CD, SM ∩ CD = M trong (SCD)
Suy ra OH ⊥ (SCD).
Như vậy: d(O, (SCD)) = OH.
Áp dụng định lí Pythagore trong tam giác SAO vuông tại O có:
SO2 = SA2 – AO2
⇒SO2=2a2−a222=7a22.
Áp dụng hệ thức lượng trong tam giác SOM vuông tại O, đường cao OH ta có:
1OH2=1SO2+1OM2=27a2+4a2=307a2
⇒OH=a21030.
Vậy dO,SCD=a21030.
d*) Ta có: AB // CD (do ABCD là hình vuông), CD ⊂ (SCD) nên AB // (SCD).
Do đó d(AB, SD) = d(AB, (SCD)) = d(A, (SCD)).
Gọi K là hình chiếu của A trên (SCD) hay AK ⊥ (SCD).
Khi đó d(A, (SCD)) = AK.
Ta có: H, K lần lượt là hình chiếu của O và A trên (SCD)
Mà C, O, A thẳng hàng nên C, H, K thẳng hàng.
Lại có: OH ⊥ (SCD), AK ⊥ (SCD).
Suy ra OH // AK.
Tam giác ACK có OH // AK, nên theo hệ quả định lí Thalès ta có:
OHAK=OCAC=12 (do O là trung điểm của AC)
⇒AK=2OH=2.a21030=a21015.
Vậy dAB,SD=dA,SCD=AK=a21015.
Lời giải SBT Toán 11 Bài 5: Khoảng cách hay khác:
-
Bài 45 trang 109 SBT Toán 11 Tập 2: Cho hình chữ nhật ABCD có AB = 3a, AD = 4a….
-
Bài 46 trang 110 SBT Toán 11 Tập 2: Hình 40 minh hoạ hình ảnh một chiếc gậy dài 3 m đặt dựa vào tường, góc nghiêng giữa chiếc gậy và mặt đất là 65°….
-
Bài 47 trang 110 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC), AB ⊥ BC, SA = AB = 3a, BC = 4a. Tính khoảng cách:….
-
Bài 48 trang 110 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có ABCD là hình chữ nhật, AB = 2a, AD = 3a, tam giác SAB vuông cân tại S ….
-
Bài 50 trang 110 SBT Toán 11 Tập 2: Cho hình hộp ABCD.A’B’C’D’ có ABCD là hình thoi cạnh a, AA’ ⊥ (ABCD), AA’ = 2a, AC = a. Tính khoảng cách:….
Xem thêm lời giải Sách bài tập Toán 11 Cánh diều hay, chi tiết khác:
-
SBT Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng
-
SBT Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
-
SBT Toán 11 Bài 4: Hai mặt phẳng vuông góc
-
SBT Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
-
SBT Toán 11 Bài tập cuối chương 8
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Cánh diều
- Giải Chuyên đề học tập Toán 11 Cánh diều
- Giải SBT Toán 11 Cánh diều
- Giải lớp 11 Cánh diều (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
